EN FR
EN FR


Section: New Results

FIT

Participants : Nathalie Mitton, Julien Vandaele.

The universal proliferation of intelligent objects is making Internet of Things (IoT) a reality; to operate on a large scale it will critically rely on new, seamless, forms of communications. But how can innovations be validated in a controlled environment, before being massively deployed into the real world? Several platforms have been deployed to address this issue. In [8] , we browse a survey of them, highlighting their characteristics and given some tips to choose the most appropriate to our needs.

Our team has contributed to the deployment of the FIT IoT-LAB platform [2] , [19] , [27] , which addresses this challenge by offering a unique open first class service to all IoT developers, researchers, integrators and developers: a large-scale experimental testbed allowing design, development, deployment and testing of innovative IoT applications, in order to test the future and make it safe. One of the specific deployment focuses on the automatic docking of robots for energy recharge. We explain it in [17] . The objective is to achieve long-term autonomous robots within an experiment test-bed. We propose to combine the use of QR codes as landmarks and Infrared distance sensors. The relative size of the lateral edges of the visual pattern is used to position the robot in relation with the dock. Infrared distance sensors are then used to perform different approaching strategies depending on the distance. Experiments show that the proposed solution is fully operational and robust. Not to rely exclusively on visual pattern recognition avoids potential errors induced by camera calibration. Additionally, as a positive side effect, the use of Infrared sensors allows the robot to avoid obstacles while docking. The finality of such an approach is to integrate these robots into the FIT IoT Lab experimental testbed which allows any experimenter to book wireless resources such as wireless sensors remotely and to test their own code. Wifibots holding wireless sensors will be integrated as additional reservable resources of the platform to enlarge the set of possible experimentations with mobile entities.